This function computes the three 'DepthGram' representations from a p-variate functional data set.
depthgram(
Data,
marginal_outliers = FALSE,
boxplot_factor = 1.5,
outliergram_factor = 1.5,
ids = NULL
)
# S3 method for default
depthgram(
Data,
marginal_outliers = FALSE,
boxplot_factor = 1.5,
outliergram_factor = 1.5,
ids = NULL
)
# S3 method for fData
depthgram(
Data,
marginal_outliers = FALSE,
boxplot_factor = 1.5,
outliergram_factor = 1.5,
ids = NULL
)
# S3 method for mfData
depthgram(
Data,
marginal_outliers = FALSE,
boxplot_factor = 1.5,
outliergram_factor = 1.5,
ids = NULL
)A list of length L (number of components)
in which each element is an N x P matrix with N individuals and P
time points. Alternatively, it can also be an object of class
fData or of class mfData.
A boolean specifying whether the function should
return shape and amplitude outliers over each dimension. Defaults to
FALSE.
A numeric value specifying the inflation factor for
marginal functional boxplots. This is ignored if marginal_outliers == FALSE. Defaults to 1.5.
A numeric value specifying the inflation factor for
marginal outliergrams. This is ignored if marginal_outliers == FALSE.
Defaults to 1.5.
A character vector specifying labels for individual observations.
Defaults to NULL, in which case observations will remain unlabelled.
An object of class depthgram which is a list with the following
items:
mbd.mei.d: vector MBD of the MEI dimension-wise.
mei.mbd.d: vector MEI of the MBD dimension-wise.
mbd.mei.t: vector MBD of the MEI time-wise.
mei.mbd.t: vector MEI of the MEI time-wise.
mbd.mei.t2: vector MBD of the MEI time/correlation-wise.
mei.mbd.t2: vector MEI of the MBD time/correlation-wise.
shp.out.det: detected shape outliers by dimension.
mag.out.det: detected magnitude outliers by dimension.
mbd.d: matrix n x p of MBD dimension-wise.
mei.d: matrix n x p of MEI dimension-wise.
mbd.t: matrix n x p of MBD time-wise.
mei.t: matrix n x p of MEI time-wise.
mbd.t2: matrix n x p of MBD time/correlation-wise
mei.t2: matrix n x p of MBD time/correlation-wise.
Aleman-Gomez, Y., Arribas-Gil, A., Desco, M. Elias-Fernandez, A., and Romo, J. (2021). "Depthgram: Visualizing Outliers in High Dimensional Functional Data with application to Task fMRI data exploration".
N <- 2e2
P <- 1e3
grid <- seq(0, 1, length.out = P)
Cov <- exp_cov_function(grid, alpha = 0.3, beta = 0.4)
Data <- list()
Data[[1]] <- generate_gauss_fdata(
N,
centerline = sin(2 * pi * grid),
Cov = Cov
)
Data[[2]] <- generate_gauss_fdata(
N,
centerline = sin(2 * pi * grid),
Cov = Cov
)
names <- paste0("id_", 1:nrow(Data[[1]]))
DG1 <- depthgram(Data, marginal_outliers = TRUE, ids = names)
fD <- fData(grid, Data[[1]])
DG2 <- depthgram(fD, marginal_outliers = TRUE, ids = names)
mfD <- mfData(grid, Data)
DG3 <- depthgram(mfD, marginal_outliers = TRUE, ids = names)