This is a convenience function that simplifies the task of appending multivariate functional observations of two datasets to a unique multivariate functional dataset.

append_mfData(mfD1, mfD2)

Arguments

mfD1

is the first multivariate functional dataset, stored into an mfData object.

mfD2

is the second multivariate functional dataset, stored into an mfData object.

Value

The function returns a mfData object containing the union of mfD1 and mfD2

Details

The two original datasets must be compatible, i.e. must have same number of components (dimensions) and must be defined on the same grid. If we denote with \(X_1^(i), \ldots, X_n^(i)\), \(i=0, \ldots, L\) the first dataset, defined over the grid \(I = t_1, \ldots, t_P\), and with \(Y_1^(i), \ldots, Y_m^(i)\), \(i=0, \ldots, L\) the second functional dataset, the method returns the union dataset obtained by taking all the \(n + m\) observations together.

See also

Examples

# Creating two simple bivariate datasets

grid = seq(0, 2 * pi, length.out = 100)

values11 = matrix( c(sin(grid),
                     sin(2 * grid)), nrow = 2, ncol = length(grid),
                   byrow=TRUE)
values12 = matrix( c(sin(3 * grid),
                     sin(4 * grid)), nrow = 2, ncol = length(grid),
                   byrow=TRUE)
values21 = matrix( c(cos(grid),
                     cos(2 * grid)), nrow = 2, ncol = length(grid),
                   byrow=TRUE)
values22 = matrix( c(cos(3 * grid),
                     cos(4 * grid)), nrow = 2, ncol = length(grid),
                   byrow=TRUE)

mfD1 = mfData( grid, list(values11, values12) )
mfD2 = mfData( grid, list(values21, values22) )

# Appending them to a unique dataset
append_mfData(mfD1, mfD2)
#> $N
#> [1] 4
#> 
#> $L
#> [1] 2
#> 
#> $P
#> [1] 100
#> 
#> $t0
#> [1] 0
#> 
#> $tP
#> [1] 6.283185
#> 
#> $fDList
#> $fDList[[1]]
#> $t0
#> [1] 0
#> 
#> $tP
#> [1] 6.283185
#> 
#> $h
#> [1] 0.06346652
#> 
#> $P
#> [1] 100
#> 
#> $N
#> [1] 4
#> 
#> $values
#>      [,1]       [,2]      [,3]      [,4]      [,5]      [,6]      [,7]
#> [1,]    0 0.06342392 0.1265925 0.1892512 0.2511480 0.3120334 0.3716625
#> [2,]    0 0.12659245 0.2511480 0.3716625 0.4861967 0.5929079 0.6900790
#> [3,]    1 0.99798668 0.9919548 0.9819287 0.9679487 0.9500711 0.9283679
#> [4,]    1 0.99195481 0.9679487 0.9283679 0.8738494 0.8052703 0.7237340
#>           [,8]      [,9]     [,10]     [,11]     [,12]      [,13]       [,14]
#> [1,] 0.4297949 0.4861967 0.5406408 0.5929079 0.6427876 0.69007901  0.73459171
#> [2,] 0.7761465 0.8497254 0.9096320 0.9549022 0.9848078 0.99886734  0.99685478
#> [3,] 0.9029265 0.8738494 0.8412535 0.8052703 0.7660444 0.72373404  0.67850941
#> [4,] 0.6305527 0.5272255 0.4154150 0.2969204 0.1736482 0.04758192 -0.07924996
#>           [,15]      [,16]      [,17]      [,18]      [,19]      [,20]
#> [1,]  0.7761465  0.8145760  0.8497254  0.8814534  0.9096320  0.9341479
#> [2,]  0.9788024  0.9450008  0.8959938  0.8325699  0.7557496  0.6667690
#> [3,]  0.6305527  0.5800569  0.5272255  0.4722711  0.4154150  0.3568862
#> [4,] -0.2048067 -0.3270680 -0.4440666 -0.5539201 -0.6548607 -0.7452644
#>           [,21]      [,22]      [,23]      [,24]       [,25]       [,26]
#> [1,]  0.9549022  0.9718116  0.9848078  0.9938385  0.99886734  0.99987413
#> [2,]  0.5670599  0.4582265  0.3420201  0.2203105  0.09505604 -0.03172793
#> [3,]  0.2969204  0.2357589  0.1736482  0.1108382  0.04758192 -0.01586596
#> [4,] -0.8236766 -0.8888354 -0.9396926 -0.9754298 -0.99547192 -0.99949654
#>            [,27]      [,28]      [,29]      [,30]      [,31]      [,32]
#> [1,]  0.99685478  0.9898214  0.9788024  0.9638422  0.9450008  0.9223543
#> [2,] -0.15800140 -0.2817326 -0.4009305 -0.5136774 -0.6181590 -0.7126942
#> [3,] -0.07924996 -0.1423148 -0.2048067 -0.2664738 -0.3270680 -0.3863451
#> [4,] -0.98743889 -0.9594930 -0.9161085 -0.8579834 -0.7860531 -0.7014749
#>           [,33]      [,34]      [,35]      [,36]      [,37]       [,38]
#> [1,]  0.8959938  0.8660254  0.8325699  0.7957618  0.7557496  0.71269417
#> [2,] -0.7957618 -0.8660254 -0.9223543 -0.9638422 -0.9898214 -0.99987413
#> [3,] -0.4440666 -0.5000000 -0.5539201 -0.6056097 -0.6548607 -0.70147489
#> [4,] -0.6056097 -0.5000000 -0.3863451 -0.2664738 -0.1423148 -0.01586596
#>           [,39]      [,40]      [,41]      [,42]      [,43]      [,44]
#> [1,]  0.6667690  0.6181590  0.5670599  0.5136774  0.4582265  0.4009305
#> [2,] -0.9938385 -0.9718116 -0.9341479 -0.8814534 -0.8145760 -0.7345917
#> [3,] -0.7452644 -0.7860531 -0.8236766 -0.8579834 -0.8888354 -0.9161085
#> [4,]  0.1108382  0.2357589  0.3568862  0.4722711  0.5800569  0.6785094
#>           [,45]      [,46]      [,47]      [,48]       [,49]       [,50]
#> [1,]  0.3420201  0.2817326  0.2203105  0.1580014  0.09505604  0.03172793
#> [2,] -0.6427876 -0.5406408 -0.4297949 -0.3120334 -0.18925124 -0.06342392
#> [3,] -0.9396926 -0.9594930 -0.9754298 -0.9874389 -0.99547192 -0.99949654
#> [4,]  0.7660444  0.8412535  0.9029265  0.9500711  0.98192870  0.99798668
#>            [,51]       [,52]      [,53]      [,54]      [,55]      [,56]
#> [1,] -0.03172793 -0.09505604 -0.1580014 -0.2203105 -0.2817326 -0.3420201
#> [2,]  0.06342392  0.18925124  0.3120334  0.4297949  0.5406408  0.6427876
#> [3,] -0.99949654 -0.99547192 -0.9874389 -0.9754298 -0.9594930 -0.9396926
#> [4,]  0.99798668  0.98192870  0.9500711  0.9029265  0.8412535  0.7660444
#>           [,57]      [,58]      [,59]      [,60]      [,61]      [,62]
#> [1,] -0.4009305 -0.4582265 -0.5136774 -0.5670599 -0.6181590 -0.6667690
#> [2,]  0.7345917  0.8145760  0.8814534  0.9341479  0.9718116  0.9938385
#> [3,] -0.9161085 -0.8888354 -0.8579834 -0.8236766 -0.7860531 -0.7452644
#> [4,]  0.6785094  0.5800569  0.4722711  0.3568862  0.2357589  0.1108382
#>            [,63]      [,64]      [,65]      [,66]      [,67]      [,68]
#> [1,] -0.71269417 -0.7557496 -0.7957618 -0.8325699 -0.8660254 -0.8959938
#> [2,]  0.99987413  0.9898214  0.9638422  0.9223543  0.8660254  0.7957618
#> [3,] -0.70147489 -0.6548607 -0.6056097 -0.5539201 -0.5000000 -0.4440666
#> [4,] -0.01586596 -0.1423148 -0.2664738 -0.3863451 -0.5000000 -0.6056097
#>           [,69]      [,70]      [,71]      [,72]      [,73]       [,74]
#> [1,] -0.9223543 -0.9450008 -0.9638422 -0.9788024 -0.9898214 -0.99685478
#> [2,]  0.7126942  0.6181590  0.5136774  0.4009305  0.2817326  0.15800140
#> [3,] -0.3863451 -0.3270680 -0.2664738 -0.2048067 -0.1423148 -0.07924996
#> [4,] -0.7014749 -0.7860531 -0.8579834 -0.9161085 -0.9594930 -0.98743889
#>            [,75]       [,76]      [,77]      [,78]      [,79]      [,80]
#> [1,] -0.99987413 -0.99886734 -0.9938385 -0.9848078 -0.9718116 -0.9549022
#> [2,]  0.03172793 -0.09505604 -0.2203105 -0.3420201 -0.4582265 -0.5670599
#> [3,] -0.01586596  0.04758192  0.1108382  0.1736482  0.2357589  0.2969204
#> [4,] -0.99949654 -0.99547192 -0.9754298 -0.9396926 -0.8888354 -0.8236766
#>           [,81]      [,82]      [,83]      [,84]      [,85]      [,86]
#> [1,] -0.9341479 -0.9096320 -0.8814534 -0.8497254 -0.8145760 -0.7761465
#> [2,] -0.6667690 -0.7557496 -0.8325699 -0.8959938 -0.9450008 -0.9788024
#> [3,]  0.3568862  0.4154150  0.4722711  0.5272255  0.5800569  0.6305527
#> [4,] -0.7452644 -0.6548607 -0.5539201 -0.4440666 -0.3270680 -0.2048067
#>            [,87]       [,88]      [,89]      [,90]      [,91]      [,92]
#> [1,] -0.73459171 -0.69007901 -0.6427876 -0.5929079 -0.5406408 -0.4861967
#> [2,] -0.99685478 -0.99886734 -0.9848078 -0.9549022 -0.9096320 -0.8497254
#> [3,]  0.67850941  0.72373404  0.7660444  0.8052703  0.8412535  0.8738494
#> [4,] -0.07924996  0.04758192  0.1736482  0.2969204  0.4154150  0.5272255
#>           [,93]      [,94]      [,95]      [,96]      [,97]      [,98]
#> [1,] -0.4297949 -0.3716625 -0.3120334 -0.2511480 -0.1892512 -0.1265925
#> [2,] -0.7761465 -0.6900790 -0.5929079 -0.4861967 -0.3716625 -0.2511480
#> [3,]  0.9029265  0.9283679  0.9500711  0.9679487  0.9819287  0.9919548
#> [4,]  0.6305527  0.7237340  0.8052703  0.8738494  0.9283679  0.9679487
#>            [,99]        [,100]
#> [1,] -0.06342392 -2.449294e-16
#> [2,] -0.12659245 -4.898587e-16
#> [3,]  0.99798668  1.000000e+00
#> [4,]  0.99195481  1.000000e+00
#> 
#> attr(,"class")
#> [1] "fData"
#> 
#> $fDList[[2]]
#> $t0
#> [1] 0
#> 
#> $tP
#> [1] 6.283185
#> 
#> $h
#> [1] 0.06346652
#> 
#> $P
#> [1] 100
#> 
#> $N
#> [1] 4
#> 
#> $values
#>      [,1]      [,2]      [,3]      [,4]      [,5]      [,6]       [,7]
#> [1,]    0 0.1892512 0.3716625 0.5406408 0.6900790 0.8145760 0.90963200
#> [2,]    0 0.2511480 0.4861967 0.6900790 0.8497254 0.9549022 0.99886734
#> [3,]    1 0.9819287 0.9283679 0.8412535 0.7237340 0.5800569 0.41541501
#> [4,]    1 0.9679487 0.8738494 0.7237340 0.5272255 0.2969204 0.04758192
#>            [,8]        [,9]      [,10]      [,11]      [,12]       [,13]
#> [1,]  0.9718116  0.99886734  0.9898214  0.9450008  0.8660254  0.75574957
#> [2,]  0.9788024  0.89599377  0.7557496  0.5670599  0.3420201  0.09505604
#> [3,]  0.2357589  0.04758192 -0.1423148 -0.3270680 -0.5000000 -0.65486073
#> [4,] -0.2048067 -0.44406661 -0.6548607 -0.8236766 -0.9396926 -0.99547192
#>           [,14]      [,15]      [,16]       [,17]       [,18]      [,19]
#> [1,]  0.6181590  0.4582265  0.2817326  0.09505604 -0.09505604 -0.2817326
#> [2,] -0.1580014 -0.4009305 -0.6181590 -0.79576184 -0.92235429 -0.9898214
#> [3,] -0.7860531 -0.8888354 -0.9594930 -0.99547192 -0.99547192 -0.9594930
#> [4,] -0.9874389 -0.9161085 -0.7860531 -0.60560969 -0.38634513 -0.1423148
#>           [,20]      [,21]      [,22]      [,23]      [,24]      [,25]
#> [1,] -0.4582265 -0.6181590 -0.7557496 -0.8660254 -0.9450008 -0.9898214
#> [2,] -0.9938385 -0.9341479 -0.8145760 -0.6427876 -0.4297949 -0.1892512
#> [3,] -0.8888354 -0.7860531 -0.6548607 -0.5000000 -0.3270680 -0.1423148
#> [4,]  0.1108382  0.3568862  0.5800569  0.7660444  0.9029265  0.9819287
#>            [,26]      [,27]      [,28]      [,29]      [,30]      [,31]
#> [1,] -0.99886734 -0.9718116 -0.9096320 -0.8145760 -0.6900790 -0.5406408
#> [2,]  0.06342392  0.3120334  0.5406408  0.7345917  0.8814534  0.9718116
#> [3,]  0.04758192  0.2357589  0.4154150  0.5800569  0.7237340  0.8412535
#> [4,]  0.99798668  0.9500711  0.8412535  0.6785094  0.4722711  0.2357589
#>            [,32]      [,33]         [,34]      [,35]      [,36]      [,37]
#> [1,] -0.37166246 -0.1892512  6.432491e-16  0.1892512  0.3716625  0.5406408
#> [2,]  0.99987413  0.9638422  8.660254e-01  0.7126942  0.5136774  0.2817326
#> [3,]  0.92836793  0.9819287  1.000000e+00  0.9819287  0.9283679  0.8412535
#> [4,] -0.01586596 -0.2664738 -5.000000e-01 -0.7014749 -0.8579834 -0.9594930
#>            [,38]      [,39]      [,40]      [,41]       [,42]      [,43]
#> [1,]  0.69007901  0.8145760  0.9096320  0.9718116  0.99886734  0.9898214
#> [2,]  0.03172793 -0.2203105 -0.4582265 -0.6667690 -0.83256985 -0.9450008
#> [3,]  0.72373404  0.5800569  0.4154150  0.2357589  0.04758192 -0.1423148
#> [4,] -0.99949654 -0.9754298 -0.8888354 -0.7452644 -0.55392006 -0.3270680
#>            [,44]      [,45]      [,46]      [,47]      [,48]      [,49]
#> [1,]  0.94500082  0.8660254  0.7557496  0.6181590  0.4582265  0.2817326
#> [2,] -0.99685478 -0.9848078 -0.9096320 -0.7761465 -0.5929079 -0.3716625
#> [3,] -0.32706796 -0.5000000 -0.6548607 -0.7860531 -0.8888354 -0.9594930
#> [4,] -0.07924996  0.1736482  0.4154150  0.6305527  0.8052703  0.9283679
#>            [,50]       [,51]      [,52]      [,53]      [,54]      [,55]
#> [1,]  0.09505604 -0.09505604 -0.2817326 -0.4582265 -0.6181590 -0.7557496
#> [2,] -0.12659245  0.12659245  0.3716625  0.5929079  0.7761465  0.9096320
#> [3,] -0.99547192 -0.99547192 -0.9594930 -0.8888354 -0.7860531 -0.6548607
#> [4,]  0.99195481  0.99195481  0.9283679  0.8052703  0.6305527  0.4154150
#>           [,56]       [,57]      [,58]       [,59]      [,60]      [,61]
#> [1,] -0.8660254 -0.94500082 -0.9898214 -0.99886734 -0.9718116 -0.9096320
#> [2,]  0.9848078  0.99685478  0.9450008  0.83256985  0.6667690  0.4582265
#> [3,] -0.5000000 -0.32706796 -0.1423148  0.04758192  0.2357589  0.4154150
#> [4,]  0.1736482 -0.07924996 -0.3270680 -0.55392006 -0.7452644 -0.8888354
#>           [,62]       [,63]      [,64]      [,65]      [,66]         [,67]
#> [1,] -0.8145760 -0.69007901 -0.5406408 -0.3716625 -0.1892512  1.286498e-15
#> [2,]  0.2203105 -0.03172793 -0.2817326 -0.5136774 -0.7126942 -8.660254e-01
#> [3,]  0.5800569  0.72373404  0.8412535  0.9283679  0.9819287  1.000000e+00
#> [4,] -0.9754298 -0.99949654 -0.9594930 -0.8579834 -0.7014749 -5.000000e-01
#>           [,68]       [,69]      [,70]      [,71]      [,72]      [,73]
#> [1,]  0.1892512  0.37166246  0.5406408  0.6900790  0.8145760  0.9096320
#> [2,] -0.9638422 -0.99987413 -0.9718116 -0.8814534 -0.7345917 -0.5406408
#> [3,]  0.9819287  0.92836793  0.8412535  0.7237340  0.5800569  0.4154150
#> [4,] -0.2664738 -0.01586596  0.2357589  0.4722711  0.6785094  0.8412535
#>           [,74]       [,75]      [,76]      [,77]      [,78]      [,79]
#> [1,]  0.9718116  0.99886734  0.9898214  0.9450008  0.8660254  0.7557496
#> [2,] -0.3120334 -0.06342392  0.1892512  0.4297949  0.6427876  0.8145760
#> [3,]  0.2357589  0.04758192 -0.1423148 -0.3270680 -0.5000000 -0.6548607
#> [4,]  0.9500711  0.99798668  0.9819287  0.9029265  0.7660444  0.5800569
#>           [,80]      [,81]      [,82]       [,83]       [,84]      [,85]
#> [1,]  0.6181590  0.4582265  0.2817326  0.09505604 -0.09505604 -0.2817326
#> [2,]  0.9341479  0.9938385  0.9898214  0.92235429  0.79576184  0.6181590
#> [3,] -0.7860531 -0.8888354 -0.9594930 -0.99547192 -0.99547192 -0.9594930
#> [4,]  0.3568862  0.1108382 -0.1423148 -0.38634513 -0.60560969 -0.7860531
#>           [,86]      [,87]       [,88]      [,89]      [,90]      [,91]
#> [1,] -0.4582265 -0.6181590 -0.75574957 -0.8660254 -0.9450008 -0.9898214
#> [2,]  0.4009305  0.1580014 -0.09505604 -0.3420201 -0.5670599 -0.7557496
#> [3,] -0.8888354 -0.7860531 -0.65486073 -0.5000000 -0.3270680 -0.1423148
#> [4,] -0.9161085 -0.9874389 -0.99547192 -0.9396926 -0.8236766 -0.6548607
#>            [,92]      [,93]       [,94]      [,95]      [,96]      [,97]
#> [1,] -0.99886734 -0.9718116 -0.90963200 -0.8145760 -0.6900790 -0.5406408
#> [2,] -0.89599377 -0.9788024 -0.99886734 -0.9549022 -0.8497254 -0.6900790
#> [3,]  0.04758192  0.2357589  0.41541501  0.5800569  0.7237340  0.8412535
#> [4,] -0.44406661 -0.2048067  0.04758192  0.2969204  0.5272255  0.7237340
#>           [,98]      [,99]        [,100]
#> [1,] -0.3716625 -0.1892512 -7.347881e-16
#> [2,] -0.4861967 -0.2511480 -9.797174e-16
#> [3,]  0.9283679  0.9819287  1.000000e+00
#> [4,]  0.8738494  0.9679487  1.000000e+00
#> 
#> attr(,"class")
#> [1] "fData"
#> 
#> 
#> attr(,"class")
#> [1] "mfData"