This function computes the Half-Region Depth (HRD) of elements of a univariate functional dataset.
HRD(Data)
# S3 method for fData
HRD(Data)
# S3 method for default
HRD(Data)
either an fData
object or a matrix-like dataset of
functional data (e.g. fData$values
),
with observations as rows and measurements over grid points as columns.
The function returns a vector containing the values of HRD for each
element of the functional dataset provided in Data
.
Given a univariate functional dataset, \(X_1(t), X_2(t), \ldots, X_N(t)\), defined over a compact interval \(I=[a,b]\), this function computes the HRD of its elements, i.e.:
$$HRD(X(t)) = \min( EI( X(t) ), HI(X(t)) ),$$
where \(EI(X(t))\) indicates the Epigraph Index (EI) of \(X(t)\) with respect to the dataset, and \(HI(X(t))\) indicates the Hypograph Index of \(X(t)\) with respect to the dataset.
Lopez-Pintado, S. and Romo, J. (2012). A half-region depth for functional data, Computational Statistics and Data Analysis, 55, 1679-1695.
Arribas-Gil, A., and Romo, J. (2014). Shape outlier detection and visualization for functional data: the outliergram, Biostatistics, 15(4), 603-619.
N = 20
P = 1e2
grid = seq( 0, 1, length.out = P )
C = exp_cov_function( grid, alpha = 0.2, beta = 0.3 )
Data = generate_gauss_fdata( N,
centerline = sin( 2 * pi * grid ),
C )
fD = fData( grid, Data )
HRD( fD )
#> [1] 0.05 0.05 0.20 0.10 0.10 0.05 0.05 0.05 0.15 0.10 0.05 0.05 0.10 0.10 0.05
#> [16] 0.10 0.05 0.25 0.05 0.20
HRD( Data )
#> [1] 0.05 0.05 0.20 0.10 0.10 0.05 0.05 0.05 0.15 0.10 0.05 0.05 0.10 0.10 0.05
#> [16] 0.10 0.05 0.25 0.05 0.20