Shifted limited-memory variable-metric algorithm.
Usage
varmetric(
x0,
fn,
gr = NULL,
rank2 = TRUE,
lower = NULL,
upper = NULL,
nl.info = FALSE,
control = list(),
...
)
Arguments
- x0
initial point for searching the optimum.
- fn
objective function to be minimized.
- gr
gradient of function
fn
; will be calculated numerically if not specified.- rank2
logical; if true uses a rank-2 update method, else rank-1.
- lower, upper
lower and upper bound constraints.
- nl.info
logical; shall the original NLopt info been shown.
- control
list of control parameters, see
nl.opts
for help.- ...
further arguments to be passed to the function.
Value
List with components:
- par
the optimal solution found so far.
- value
the function value corresponding to
par
.- iter
number of (outer) iterations, see
maxeval
.- convergence
integer code indicating successful completion (> 0) or a possible error number (< 0).
- message
character string produced by NLopt and giving additional information.
Details
Variable-metric methods are a variant of the quasi-Newton methods, especially adapted to large-scale unconstrained (or bound constrained) minimization.
Note
Based on L. Luksan's Fortran implementation of a shifted limited-memory variable-metric algorithm.
References
J. Vlcek and L. Luksan, ``Shifted limited-memory variable metric methods for large-scale unconstrained minimization,'' J. Computational Appl. Math. 186, p. 365-390 (2006).
Examples
flb <- function(x) {
p <- length(x)
sum(c(1, rep(4, p-1)) * (x - c(1, x[-p])^2)^2)
}
# 25-dimensional box constrained: par[24] is *not* at the boundary
S <- varmetric(rep(3, 25), flb, lower=rep(2, 25), upper=rep(4, 25),
nl.info = TRUE, control = list(xtol_rel=1e-8))
#>
#> Call:
#> nloptr(x0 = x0, eval_f = fn, eval_grad_f = gr, lb = lower, ub = upper,
#> opts = opts)
#>
#>
#> Minimization using NLopt version 2.7.1
#>
#> NLopt solver status: 1 ( NLOPT_SUCCESS: Generic success return value. )
#>
#> Number of Iterations....: 19
#> Termination conditions: stopval: -Inf xtol_rel: 1e-08 maxeval: 1000 ftol_rel: 0 ftol_abs: 0
#> Number of inequality constraints: 0
#> Number of equality constraints: 0
#> Optimal value of objective function: 368.105912874334
#> Optimal value of controls: 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2.109093 4
#>
#>
## Optimal value of objective function: 368.105912874334
## Optimal value of controls: 2 ... 2 2.109093 4