This function provides a Monte-Carlo estimate of the power of the permutation tests proposed in this package.
Usage
power2(
model1 = "gnp",
model2 = "k_regular",
n1 = 20L,
n2 = 20L,
num_vertices = 25L,
model1_params = NULL,
model2_params = NULL,
representation = "adjacency",
distance = "frobenius",
stats = c("flipr:t_ip", "flipr:f_ip"),
B = 1000L,
alpha = 0.05,
test = "exact",
k = 5L,
R = 1000L,
seed = 1234
)
Arguments
- model1
A string specifying the model to be used for generating the first sample. Choices are
"sbm"
,"k_regular"
,"gnp"
,"smallworld"
,"pa"
,"poisson"
and"binomial"
. Defaults to"gnp"
.- model2
A string specifying the model to be used for generating the second sample. Choices are
"sbm"
,"k_regular"
,"gnp"
,"smallworld"
,"pa"
,"poisson"
and"binomial"
. Defaults to"k_regular"
.- n1
The size of the first sample. Defaults to
20L
.- n2
The size of the second sample. Defaults to
20L
.- num_vertices
The number of nodes in the generated graphs. Defaults to
25L
.- model1_params
A named list setting the parameters of the first chosen model. Defaults to
list(p = 1/3)
.- model2_params
A named list setting the parameters of the second chosen model. Defaults to
list(k = 8L)
.- representation
A string specifying the desired type of representation, among:
"adjacency"
,"laplacian"
and"modularity"
. Defaults to"adjacency"
.- distance
A string specifying the chosen distance for calculating the test statistic, among:
"hamming"
,"frobenius"
,"spectral"
and"root-euclidean"
. Defaults to"frobenius"
.- stats
A character vector specifying the chosen test statistic(s), among:
"original_edge_count"
,"generalized_edge_count"
,"weighted_edge_count"
,"student_euclidean"
,"welch_euclidean"
or any statistics based on inter-point distances available in the flipr package:"flipr:student_ip"
,"flipr:fisher_ip"
,"flipr:bg_ip"
,"flipr:energy_ip"
,"flipr:cq_ip"
. Defaults toc("flipr:student_ip", "flipr:fisher_ip")
.- B
The number of permutation or the tolerance. If this number is lower than
1
, it is intended as a tolerance. Otherwise, it is intended as the number of required permutations. Defaults to1000L
.- alpha
Significance level for hypothesis testing. Defaults to
0.05
.- test
A character string specifying the formula to be used to compute the permutation p-value. Choices are
"estimate"
,"upper_bound"
and"exact"
. Defaults to"exact"
which provides exact tests.- k
An integer specifying the density of the minimum spanning tree used for the edge count statistics. Defaults to
5L
.- R
Number of Monte-Carlo trials used to estimate the power. Defaults to
1000L
.- seed
An integer specifying the random generator seed. Defaults to `1234.