This function computes the macro-average sensitivity for a multi-class prediction model. It assumes that the negative class is the first one.
Usage
macro_average_sensitivity_vec(
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
case_weights = NULL,
event_level = "first",
...
)
macro_average_sensitivity(data, ...)
# S3 method for class 'data.frame'
macro_average_sensitivity(
data,
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
case_weights = NULL,
event_level = "first",
...
)Arguments
- truth
The column identifier for the true class results (that is a factor).
- estimate
The column identifier for the predicted class results (that is also factor).
- estimator
One of: "binary", "macro", "macro_weighted", or "micro" to specify the type of averaging to be done.
- na_rm
A logical value indicating whether NA values should be stripped before the computation proceeds.
- case_weights
The optional column identifier for case weights.
- event_level
A single string. Either "first" or "second" to specify which level of truth to consider as the "event". This argument is only applicable when estimator = "binary".
- ...
Currently unused.
- data
Either a data.frame containing the columns specified by the truth and estimate arguments, or a table/matrix where the true class results should be in the columns of the table.