
Data types with

 1

2

Navigate to the main page of the class: https://
astamm.github.io/data-science-with-r/.
Download 08-Types-Exercises.qmd from the outline
table and open them.

Recall
What types of data are in this data set?

Common data types

1.Logicals
2.Strings
3.Factors
4.Dates and Times

4

Logicals

Logicals
R's data type for boolean values (i.e. TRUE and FALSE).
TRUE
TRUE

typeof(TRUE)
"logical"

typeof(c(TRUE, TRUE, FALSE))
"logical"

6

Warm Up

Did you fly here?
Did your flight arrive late?

8

flights |>
 mutate(delayed = arr_delay > 0) |>
 select(arr_delay, delayed)

9

flights |>
 mutate(delayed = arr_delay > 0) |>
 select(arr_delay, delayed)

Can we compute
the proportion of
NYC flights that

arrived late?

10

1. Logical tests
2. Math with logicals

Most useful skills

11

Quiz

What does this return?
TRUE + 0

Not an Error!

12

Quiz

What does this return?
TRUE + 0

1

13

Math with logicals

TRUE = 1
FALSE = 0

14

Quiz

What will this return?
sum(c(FALSE, FALSE, TRUE, FALSE))

The Number of TRUEs

15

Quiz

What will this tell us?
sum(flights$arr_delay > 0)

The Number of DELAYED
FLIGHTS

16

Quiz

What will this tell us?
mean(flights$arr_delay > 0)

The proportion of

DELAYED FLIGHTS

17

TRUE = 1
FALSE = 0

sum() = number that pass
mean() = proportion that pass

18

Your Turn 1
Use flights to create delayed, a variable that displays whether a
flight was delayed (arr_delay > 0).

Then, filter to rows where delayed does not equal NA.

Finally, create a summary table that shows:

1. How many flights were delayed

2. What proportion of flights were delayed

19

flights |>
 mutate(delayed = arr_delay > 0) |>
 filter(!is.na(delayed)) |>
 summarise(total = sum(delayed), prop = mean(delayed))
A tibble: 1 × 2
total prop
<int> <dbl>
1 133004 0.4063101

20

Strings

(character) strings
Anything surrounded by quotes(") or single quotes(').
"one"
"one"

typeof("one")
"character"

typeof("oops. I'm stuck in a string)
+

"character"
 ")

22

Warm Up

Are boys names or girls names more likely to end in a vowel?

23

babynames

Names of male and female babies born
in the US from 1880 to 2017. 1.9M rows.

install.packages("babynames")
library(babynames)

R package

babynames

How can we build the
proportion of boys and girls

whose name ends in a vowel?

Most useful skills

1.How to extract/ replace substrings
2.How to find matches for patterns
3.Regular expressions

26

stringr

Simple, consistent functions for working
with strings.

install.packages("tidyverse")
library(tidyverse)

27

str_sub()
Extract or replace portions of a string with str_sub()

str_sub(string, start = 1, end = -1)

position of first
character to extract
within each string

string(s) to
manipulate

position of last
character to extract
within each string

28

Quiz
What will this return?
str_sub("Garrett", 1, 2)

29

Quiz
What will this return?
str_sub("Garrett", 1, 2)

"Ga"

30

Quiz
What will this return?
str_sub("Garrett", 1, 1)

31

Quiz
What will this return?
str_sub("Garrett", 1, 1)

"G"

32

Quiz
What will this return?
str_sub("Garrett", 2)

33

Quiz
What will this return?
str_sub("Garrett", 2)

"arrett"

34

Quiz
What will this return?
str_sub("Garrett", -3)

35

Quiz
What will this return?
str_sub("Garrett", -3)

"ett"

36

Quiz

What will this return?
g <- "Garrett"
str_sub(g, -3) <- "eth"
g

37

Quiz

What will this return?
g <- "Garrett"
str_sub(g, -3) <- "eth"
g

"Garreth"

38

Your Turn 2
Fill in the blanks to:

1. Isolate the last letter of every name

2. and create a logical variable that displays whether the
last letter is one of "a", "e", "i", "o", "u", or "y".

3. Use a weighted mean to calculate the proportion of
children whose name ends in a vowel (by year and sex)

4. and then display the results as a line plot.

39

babynames |>
 mutate(
 last = str_sub(name, -1),
 vowel = last %in% c("a", "e", "i", "o", "u", “y")
) |>
 group_by(year, sex) |>
 summarise(p_vowel = weighted.mean(vowel, n)) |>
 ggplot() +
 geom_line(mapping = aes(year, p_vowel, color = sex))

40

0.2

0.4

0.6

0.8

1880 1920 1960 2000
year

p_
vo
w
el sex

F

M

Proportion of names that end in a vowel

strings

Join and Split
str_c(..., sep = "", collapse = NULL) Join
multiple strings into a single string.
str_c(letters, LETTERS)

str_c(..., sep = "", collapse = NULL) Collapse
a vector of strings into a single string.
str_c(letters, collapse = "")

str_dup(string, times) Repeat strings times
times. str_dup(fruit, times = 2)

str_split_fixed(string, pattern, n) Split a
vector of strings into a matrix of substrings
(splitting at occurrences of a pattern match).
Also str_split to return a list of substrings.
str_split_fixed(fruit, " ", n=2)

str_glue(…, .sep = "", .envir = parent.frame())
Create a string from strings and {expressions}
to evaluate. str_glue("Pi is {pi}")

str_glue_data(.x, ..., .sep = "", .envir =
parent.frame(), .na = "NA") Use a data frame,
list, or environment to create a string from
strings and {expressions} to evaluate.
str_glue_data(mtcars, "{rownames(mtcars)}
has {hp} hp")

{xx} {yy}a string

A STRING

A STRING

a string

Mutate Strings
str_sub() <- value. Replace substrings by
identifying the substrings with str_sub() and
assigning into the results.
str_sub(fruit, 1, 3) <- "str"

str_replace(string, pattern, replacement)
Replace the first matched pattern in each
string. str_replace(fruit, "a", "-")

str_replace_all(string, pattern,
replacement) Replace all matched patterns
in each string. str_replace_all(fruit, "a", "-")

str_to_lower(string, locale = "en")1 Convert
strings to lower case.
str_to_lower(sentences)

str_to_upper(string, locale = "en")1 Convert
strings to upper case.
str_to_upper(sentences)

str_to_title(string, locale = "en")1 Convert
strings to title case. str_to_title(sentences)

a string

A String

str_conv(string, encoding) Override the
encoding of a string. str_conv(fruit,"ISO-8859-1")

str_view(string, pattern, match = NA) View
HTML rendering of first regex match in each
string. str_view(fruit, "[aeiou]")

str_view_all(string, pattern, match = NA) View
HTML rendering of all regex matches.
str_view_all(fruit, "[aeiou]")

str_wrap(string, width = 80, indent = 0, exdent
= 0) Wrap strings into nicely formatted
paragraphs. str_wrap(sentences, 20)

RStudio® is a trademark of RStudio, Inc. • CC BY SA RStudio • info@rstudio.com • 844-448-1212 • rstudio.com • Learn more at stringr.tidyverse.org • Diagrams from @LVaudor ! • stringr 1.2.0 • Updated: 2017-10

String manipulation with stringr : : CHEAT SHEET
Detect Matches

str_detect(string, pattern) Detect the
presence of a pattern match in a string.
str_detect(fruit, "a")

str_which(string, pattern) Find the indexes of
strings that contain a pattern match.
str_which(fruit, "a")

str_count(string, pattern) Count the number
of matches in a string.
str_count(fruit, "a")

str_locate(string, pattern) Locate the
positions of pattern matches in a string. Also
str_locate_all. str_locate(fruit, "a")

Manage Lengths
TRUE
TRUE
FALSE
TRUE

1
2
4

0
3
1
2

start end

2 4
4 7

NA NA
3 4

str_length(string) The width of strings (i.e.
number of code points, which generally equals
the number of characters). str_length(fruit)

str_pad(string, width, side = c("left", "right",
"both"), pad = " ") Pad strings to constant
width. str_pad(fruit, 17)

str_trunc(string, width, side = c("right", "left",
"center"), ellipsis = "...") Truncate the width of
strings, replacing content with ellipsis.
str_trunc(fruit, 3)

str_trim(string, side = c("both", "left", "right"))
Trim whitespace from the start and/or end of a
string. str_trim(fruit)

4
6
2
3

Helpers

str_order(x, decreasing = FALSE, na_last =
TRUE, locale = "en", numeric = FALSE, ...)1 Return
the vector of indexes that sorts a character
vector. x[str_order(x)]

str_sort(x, decreasing = FALSE, na_last = TRUE,
locale = "en", numeric = FALSE, ...)1 Sort a
character vector.
str_sort(x)

4
1
3
2

Order Strings

The stringr package provides a set of internally consistent tools for working with character strings, i.e. sequences of characters surrounded by quotation marks.

NA NA

Subset Strings
str_sub(string, start = 1L, end = -1L) Extract
substrings from a character vector.
str_sub(fruit, 1, 3); str_sub(fruit, -2)

str_subset(string, pattern) Return only the
strings that contain a pattern match.
str_subset(fruit, "b")

str_extract(string, pattern) Return the first
pattern match found in each string, as a vector.
Also str_extract_all to return every pattern
match. str_extract(fruit, "[aeiou]")

str_match(string, pattern) Return the first
pattern match found in each string, as a
matrix with a column for each () group in
pattern. Also str_match_all.
str_match(sentences, "(a|the) ([^]+)")

NA

1 See bit.ly/ISO639-1 for a complete list of locales.

typeof(TRUE) ## logical
typeof("one") ## character

43 So w
hat a

re dates

and fa
ctors?

Atomic types
R recognizes six elemental data types.

typeof(1) ## double
typeof(1L) ## integer

typeof(raw(1)) ## raw
typeof(1i) ## complex

Classes
You can use atomic types to build new classes.

x <- 1560139200

44

x ## 1560139200
typeof(x) ## double

Classes
You can use atomic types to build new classes.

x <- 1560139200
class(x) <- "POSIXct"

45

x ## "2019-06-10 EDT"
typeof(x) ## double

Classes
You can use atomic types to build new classes.

x <- 1560139200
class(x) <- "POSIXct"

46

x ## "2019-06-10 EDT"
typeof(x) ## double
class(x) ## POSIXct

Classes
eyes <- c(1L, 3L, 3L)

47

eyes ## 1 3 3

typeof(eyes) ## integer

Classes
eyes <- c(1L, 3L, 3L)
levels(eyes) <- c("blue", "brown", "green")

48

eyes ## 1 3 3

typeof(eyes) ## integer

Classes
eyes <- c(1L, 3L, 3L)
levels(eyes) <- c("blue", "brown", "green")
class(eyes) <- "factor"

49

eyes ## blue green green
 Levels: blue brown green
typeof(eyes) ## integer

Classes
eyes <- c(1L, 3L, 3L)
levels(eyes) <- c("blue", "brown", "green")
class(eyes) <- "factor"

50

eyes ## blue green green
 Levels: blue brown green
typeof(eyes) ## integer
class(eyes) ## factor

Factors

factors
R’s representation of categorical data. Consists of:
1. A set of values
2. An ordered set of valid levels

eyes <- factor(
 x = c("blue", "green", "green"),
 levels = c("blue", "brown", “green")
)

52

Stored as an integer vector with a levels attribute

eyes
[1] blue green green
Levels: blue brown green

unclass(eyes)
1 3 3
attr(,"levels")
"blue" "brown" "green"

53

forcats

Simple functions for working with factors.

install.packages("tidyverse")
library(tidyverse)

54

Warm Up

Which religions watch the least TV?
Do married people watch more or
less TV than single people?

55

gss_cat
A sample of data from the General Social
Survey, a long-running US survey conducted
by NORC at the University of Chicago.

library(forcats)
gss_cat

Which religions watch the least TV?

gss_cat |>
 filter(!is.na(tvhours)) |>
 group_by(relig) |>
 summarise(tvhours = mean(tvhours)) |>
 ggplot(aes(tvhours, relig)) +
 geom_point()

57

No answer

Don't know

Inter-nondenominational

Native american

Christian

Orthodox-christian

Moslem/islam

Other eastern

Hinduism

Buddhism

Other

None

Jewish

Catholic

Protestant

2 3 4
tvhours

re
lig

58

Other eastern

Hinduism

Buddhism

Orthodox-christian

Moslem/islam

Jewish

None

No answer

Other

Christian

Inter-nondenominational

Catholic

Protestant

Native american

Don't know

2 3 4
tvhours

fc
t_

re
or

de
r(r

el
ig

, t
vh

ou
rs

)

No answer

Don't know

Inter-nondenominational

Native american

Christian

Orthodox-christian

Moslem/islam

Other eastern

Hinduism

Buddhism

Other

None

Jewish

Catholic

Protestant

2 3 4
tvhours

re
lig

59

Other eastern

Hinduism

Buddhism

Orthodox-christian

Moslem/islam

Jewish

None

No answer

Other

Christian

Inter-nondenominational

Catholic

Protestant

Native american

Don't know

2 3 4
tvhours

fc
t_

re
or

de
r(r

el
ig

, t
vh

ou
rs

)

No answer

Don't know

Inter-nondenominational

Native american

Christian

Orthodox-christian

Moslem/islam

Other eastern

Hinduism

Buddhism

Other

None

Jewish

Catholic

Protestant

2 3 4
tvhours

re
lig

Which do you

prefer?

60

No answer

Don't know

Inter-nondenominational

Native american

Christian

Orthodox-christian

Moslem/islam

Other eastern

Hinduism

Buddhism

Other

None

Jewish

Catholic

Protestant

2 3 4
tvhours

re
lig

Why is the Y
axis in this

order?

61

No answer

Don't know

Inter-nondenominational

Native american

Christian

Orthodox-christian

Moslem/islam

Other eastern

Hinduism

Buddhism

Other

None

Jewish

Catholic

Protestant

2 3 4
tvhours

re
lig

Why is the Y
axis in this

order?

Because the
levels of relig

have this
order

62

levels()
Use levels() to access a factor’s levels

levels(gss_cat$relig)
[1] "No answer" "Don't know"
[3] "Inter-nondenominational" "Native american"
[5] "Christian" "Orthodox-christian"
[7] "Moslem/islam" "Other eastern"
[9] "Hinduism" "Buddhism"
[11] "Other" "None"
[13] "Jewish" "Catholic"
[15] "Protestant" "Not applicable"

Most useful skills

1.Reorder the levels
2.Recode the levels
3.Collapse levels

64

Reordering
levels

fct_reorder()
Reorders the levels of a factor based on the result of
fun(x) applied to each group of cases (grouped by level).

fct_reorder(f, x, fun = median, …, .desc = FALSE)

variable to
reorder by

(in conjunction
with fun)

factor to
reorder

function to
reorder by

(in conjunction
with x)

put in descending
order?

66

gss_cat |>
 filter(!is.na(tvhours)) |>
 group_by(relig) |>
 summarise(tvhours = mean(tvhours)) |>
 ggplot(aes(tvhours, fct_reorder(relig, tvhours))) +
 geom_point()

67

Other eastern

Hinduism

Buddhism

Orthodox-christian

Moslem/islam

Jewish

None

No answer

Other

Christian

Inter-nondenominational

Catholic

Protestant

Native american

Don't know

2 3 4
tvhours

fc
t_

re
or

de
r(r

el
ig

, t
vh

ou
rs

)

68

Your Turn 3

Repeat the previous demonstration, some of whose
code is in your notebook, to make a sensible graph
of average TV consumption by marital status.

69

gss_cat |>
 filter(!is.na(tvhours)) |>
 group_by(marital) |>
 summarise(tvhours = mean(tvhours)) |>
 ggplot(aes(tvhours, fct_reorder(marital, tvhours))) +
 geom_point()

70

No answer

Married

Divorced

Never married

Separated

Widowed

2.5 3.0 3.5
tvhours

fc
t_

re
or

de
r(m

ar
ita

l,
tv

ho
ur

s)

71

Similar
reordering
functions

gss_cat |>
 ggplot(aes(marital)) + geom_bar()

0

2500

5000

7500

10000

No answer Never married Separated Divorced Widowed Married
marital

co
un

t

gss_cat |>
 ggplot(aes(fct_infreq(marital))) + geom_bar()

0

2500

5000

7500

10000

Married Never married Divorced Widowed Separated No answer
fct_infreq(marital)

co
un

t

fct_infreq

0

2500

5000

7500

10000

No answer Separated Widowed Divorced Never married Married
fct_rev(fct_infreq(marital))

co
un

t

fct_rev

gss_cat |>
 ggplot(aes(fct_rev(fct_infreq(marital)))) + geom_bar()

Changing
level values

Your Turn 4

Do you think liberals or conservatives watch more TV?
Compute average tv hours by party ID and then plot
the results.

77

gss_cat |>
 filter(!is.na(tvhours)) |>
 group_by(partyid) |>
 summarise(tvhours = mean(tvhours)) |>
 ggplot(aes(tvhours, fct_reorder(partyid, tvhours))) +
 geom_point() +
 labs(y = "partyid")

78

1. How can we improve
these labels?

79

fct_recode()

Changes values of levels

fct_recode(f, Independent = "Ind,near dem")

new level = old level
pairs (as a named
character vector)

factor with
levels

80

gss_cat |>
 filter(!is.na(tvhours)) |>
 mutate(partyid = fct_recode(partyid,
 "Republican, strong" = "Strong republican",
 "Republican, weak" = "Not str republican",
 "Independent, near rep" = "Ind,near rep",
 "Independent, near dem" = "Ind,near dem",
 "Democrat, weak" = "Not str democrat",
 "Democrat, strong" = "Strong democrat")) %>%
 group_by(partyid) |>
 summarise(tvhours = mean(tvhours)) |>
 ggplot(aes(tvhours, fct_reorder(partyid, tvhours))) +
 geom_point() + labs(y = "partyid")

conservative

conservative

conservative

liberal

liberal

liberal

2. How can we combine
these groups?

82

Collapsing
levels

fct_collapse()

Collapses multiple levels into single levels

fct_collapse(f, Liberal = c("Democrat, strong",
 "Democrat, weak"))

named arguments set to a
character vector (levels in the

vector will be collapsed to the name
of the argument)

factor with
levels

84

gss_cat |>
 filter(!is.na(tvhours)) |>
 mutate(partyid = fct_collapse(partyid,
 conservative = c("Strong republican",
 "Not str republican",
 "Ind,near rep"),
 liberal = c("Strong democrat",
 "Not str democrat",
 "Ind,near dem"))) |>
 group_by(partyid) |>
 summarise(tvhours = mean(tvhours)) |>
 ggplot(aes(tvhours, fct_reorder(partyid, tvhours))) +
 geom_point() + labs(y = "partyid")

There are relatively few
points in each of these

groups

86

87

fct_lump()

Collapses levels with fewest values into a single
level. Collapses as many levels as possible such
that the new level is still the smallest.

fct_lump(f, other_level = "Other", …)

name of new levelfactor with
levels

88

gss_cat |>
 filter(!is.na(tvhours)) |>
 mutate(partyid = partyid |>
 fct_collapse(
 conservative = c("Strong republican",
 "Not str republican", "Ind,near rep"),
 liberal = c("Strong democrat", "Not str democrat",
 "Ind,near dem")) |>
 fct_lump()
) |>
 group_by(partyid) |>
 summarise(tvhours = mean(tvhours)) |>
 ggplot(aes(tvhours, fct_reorder(partyid, tvhours))) +
 geom_point() + labs(y = "partyid")

90

gss_cat |>
 filter(!is.na(tvhours)) |>
 mutate(partyid = partyid |>
 fct_collapse(
 conservative = c("Strong republican",
 "Not str republican", "Ind,near rep"),
 liberal = c("Strong democrat", "Not str democrat",
 "Ind,near dem")) |>
 fct_lump()
) |>
 group_by(partyid) |>
 summarise(tvhours = mean(tvhours)) |>
 ggplot(aes(fct_reorder(partyid, tvhours), tvhours)) +
 geom_col() + labs(x = "partyid") + coord_flip()

92

1 =
2 =

1 =
2 =
3 = x

1 =
2 =
3 =

1 =
2 =

x

1 =
2 =
3 =

NA

1 =
2 =

x

1 =
2 =

1 =
2 =
3 =

x

1 =
2 =
3 =

1 =
2 =
3 =

v

1 =
2 =

1 =
2 =

1 =
2 =
3 =

1 =
2 =
3 =

2
a
c

Factors with forcats : : CHEAT SHEET
Change the value of levels

The forcats package provides tools for working with factors, which are R's data structure for categorical data.

R represents categorical
data with factors. A factor
is an integer vector with a
levels attribute that stores
a set of mappings between
integers and categorical values. When you view a factor, R
displays not the integers, but the values associated with them.

fct_c(…) Combine factors
with different levels.
f1 <- factor(c("a", "c"))
f2 <- factor(c("b", "a"))
fct_c(f1, f2)

fct_unify(fs, levels =
lvls_union(fs)) Standardize
levels across a list of factors.
fct_unify(list(f2, f1))

Inspect Factors

RStudio® is a trademark of RStudio, Inc. • CC BY SA RStudio • info@rstudio.com • 844-448-1212 • rstudio.com • Learn more at forcats.tidyverse.org • Diagrams inspired by @LVaudor ! • forcats 0.3.0 • Updated: 2019-02

Factors

Create a factor with factor()
factor(x = character(), levels,
labels = levels, exclude = NA, ordered
= is.ordered(x), nmax = NA) Convert
a vector to a factor. Also as_factor.
f <- factor(c("a", "c", "b", "a"),
 levels = c("a", "b", "c"))

Return its levels with levels()
levels(x) Return/set the levels of a
factor. levels(f); levels(f) <- c("x","y","z")

Use unclass() to see its structure

Add or drop levelsCombine Factors
fct_drop(f, only) Drop unused levels.
f5 <- factor(c("a","b"),c("a","b","x"))
f6 <- fct_drop(f5)

fct_expand(f, …) Add levels to
a factor. fct_expand(f6, "x")

fct_explicit_na(f, na_level="(Missing)")
Assigns a level to NAs to ensure they
appear in plots, etc.
fct_explicit_na(factor(c("a", "b", NA)))

fct_count(f, sort = FALSE)
Count the number of values
with each level. fct_count(f)

fct_unique(f) Return the
unique values, removing
duplicates. fct_unique(f)

fct_recode(.f, ...) Manually change
levels. Also fct_relabel which obeys
purrr::map syntax to apply a function
or expression to each level.
fct_recode(f, v = "a", x = "b", z = "c")
fct_relabel(f, ~ paste0("x", .x))

fct_anon(f, prefix = ""))
Anonymize levels with random
integers. fct_anon(f)

fct_collapse(.f, ...) Collapse levels
into manually defined groups.
fct_collapse(f, x = c("a", "b"))

fct_lump(f, n, prop, w = NULL,
other_level = "Other", ties.method =
c("min", "average", "first", "last",
"random", "max")) Lump together
least/most common levels into a
single level. Also fct_lump_min.
fct_lump(f, n = 1)

fct_other(f, keep, drop, other_level =
"Other") Replace levels with "other."
fct_other(f, keep = c("a", "b"))

1

1

3
2

1 =
2 =
3 =

integer
vector

levels

1 =
2 =
3 =

stored displayed

1 =
2 =
3 =

1 =
2 =
3 =

1 =
2 =
3 =

1 =
2 =
3 =

f n
2
1
1

1 =
2 =
3 =

1 =
2 =
3 =

1 =
2 =

1 =
2 =

+ =

2

2

1
3

1 = 2
2 = 1
3 = 3

1 =
2 =
3 =

1 =
2 =
3 =

1 =
2 =
3 = Other

Other

1 =
2 =
3 =

Other

Other

1 =
2 = Other

1 =
2 =
3 =

1 =
2 =
3 =

1 =
2 =
3 =

1 =
2 =
3 =

1 =
2 =
3 =

1 =
2 =
3 =

Change the order of levels
fct_relevel(.f, ..., after = 0L)
Manually reorder factor levels.
fct_relevel(f, c("b", "c", "a"))

fct_infreq(f, ordered = NA)
Reorder levels by the frequency
in which they appear in the
data (highest frequency first).
f3 <- factor(c("c", "c", "a"))
fct_infreq(f3)

fct_inorder(f, ordered = NA)
Reorder levels by order in
which they appear in the data.
fct_inorder(f2)

fct_rev(f) Reverse level order.
f4 <- factor(c("a","b","c"))
fct_rev(f4)

fct_shift(f) Shift levels to left
or right, wrapping around end.
fct_shift(f4)

fct_shuffle(f, n = 1L) Randomly
permute order of factor levels.
fct_shuffle(f4)

fct_reorder(.f, .x, .fun=median, ...,
.desc = FALSE) Reorder levels by
their relationship with another
variable.
boxplot(data = iris, Sepal.Width ~
 fct_reorder(Species, Sepal.Width))

fct_reorder2(.f, .x, .y, .fun =
last2, ..., .desc = TRUE) Reorder
levels by their final values when
plotted with two other variables.
ggplot(data = iris,
 aes(Sepal.Width, Sepal.Length,
 color = fct_reorder2(Species,
 Sepal.Width, Sepal.Length))) +
 geom_smooth()

1 =
2 =
3 =

1 =
2 =
3 =

1 =
2 =

1 =
2 =

1 =
2 =
3 =

1 =
2 =
3 =

1 =
2 =

1 =
2 =

1 =
2 =
3 =

1 =
2 =
3 =

b c a

a
b

a
b c

a
b

a
b

a
b

a
b

a
b

a
b

x

x

c
x

a

a

c
b

a
b

c
a

a
b

a
c

a
c
b

a

a

c
b

a

a

c
b

a

a

c
b

c

a
b

a

a

c
b

a

a

c
b

a
c

b
a

a

a

c
b

v
z
x

a

a

c
b

a

a

c
b

a

a
b

a

a

c
b

a

a

a
b
c

a
b
c

a

a

c
b

a

a

c
b

c
c
a

c
c
a

a
b
c

a
b
c

b
a

b
a

a
b
c

a
b
c

a

a

c
b

b
a

b
a

b
a

x

b
a

b
a

b
a

b
a

c
b
a

b
a

c

a

b
a

c

b
a

c

b
a

c
x
v

z

c

b
a

c
c
b

a

c
a

b
a

a
b

a
c

b
a

c

b
a

c

b
a

c

b
c

a

a
c

b

c
a

b

b
a

c
c
b

a

b
a

c
c
b

a

b
a

c
b
a

c

b
a

c

b
a

c
b
a

c

b
a

c

b
a

c
b
a

c

c
a

b
c
a a

b

b
a

b
a

c

b
a

c

a
c

factors

Date times

Quiz

Does every year have 365 days?

95

Quiz

Does every day have 24 hours?

96

Quiz

Does every minute have 60 seconds?

97

Quiz

What does a month measure?

98

Most useful skills
1. Creating dates/times (i.e. parsing)
2. Access and change parts of a date
3. Deal with time zones
4. Do math with instants and time spans

99

Warm Up

• What is the best time of day to fly?

• What is the best day of the week to fly?

100

flights |> select(c(1, 2, 3, 17, 18, 5, 19))

101

flights |>
 ggplot(mapping = aes(x = sched_dep_time, y = arr_delay)) +
 geom_point(alpha = 0.2) + geom_smooth()

flights |> select(c(1, 2, 3, 17, 18, 5, 19))

103

Creating dates
and times

hms

A class for representing just clock times.

install.packages("tidyverse")
library(hms)

105

106

install.packages("tidyverse")

does the equivalent of
install.packages("ggplot2")
install.packages("dplyr")
install.packages("tidyr")
install.packages("readr")
install.packages("purrr")
install.packages("tibble")
install.packages("stringr")
install.packages("forcats")
install.packages("lubridate")
install.packages("hms")
install.packages("DBI")
install.packages("haven")
install.packages("httr")
install.packages("jsonlite")
install.packages("readxl")
install.packages("rvest")
install.packages("xml2")
install.packages("modelr")
install.packages("broom")

library("tidyverse")

does the equivalent of
library("ggplot2")
library("dplyr")
library("tidyr")
library("readr")
library("purrr")
library("tibble")
library("stringr")
library("forcats")

106106

hms()
2017-01-01 12:34:56

* on a typical day

numbers of each unit to
add to the time

hms(seconds, minutes, hours, days)

107

hms
2017-01-01 12:34:56

hms(seconds = 56, min = 34, hour = 12)
12:34:56

unclass(hms(56, 34, 12))
45296

Stored as the number of seconds since 00:00:00.*

* on a typical day108

Your Turn 5
What is the best time of day to fly?
Use the hour and minute variables in flights to
make a new variable that shows the time of each
flight as an hms.
Then use a smooth line to plot the relationship
between time of day and arr_delay.

109

flights |>
 mutate(time = hms(hour = hour, minute = minute)) |>
 ggplot(aes(time, arr_delay)) +
 geom_point(alpha = 0.2) + geom_smooth()

−5

0

5

10

15

08:00:00 12:00:00 16:00:00 20:00:00 24:00:00
time

ar
r_
de
la
y

What is the best day of the
week to fly?

112

Your Turn 6

Look at the code skeleton for Your Turn 7. Discuss
with your neighbor:
• What does each line do?
• What will the missing parts need to do?

113

lubridate

Functions for working with dates and
time spans

install.packages("tidyverse")
library(lubridate)

114

ymd() family

To parse strings as dates, use the function whose
name is y, m, d, h, m, s in the correct order.

ymd("2012/01/11")
mdy("January 11, 2012")
ymd_hms("2012-01-11 01:30:55")

2017-01-01 12:34:56

115

Parsing functions
function parses to

ymd_hms(), ymd_hm(), ymd_h()

ydm_hms(), ydm_hm(), ydm_h()
POSIXct

dmy_hms(), dmy_hm(), dmy_h()

mdy_hms(), mdy_hm(), mdy_h()

ymd(), ydm(), mdy()
Date

(POSIXct if tz specified)myd(), dmy(), dym(), yq()

hms(), hm(), ms() Period
116

Accessing
and changing
components

Accessing components

Extract components by name with a singular name
date <- ymd("2019-01-11")
year(date)
2019

118

Setting components

Use the same function to set components
date
"2019-01-11"

year(date) <- 1999
date
"1999-01-11"

119

Accessing date time components
function extracts extra arguments

year() year

month() month label = FALSE, abbr = TRUE

week() week

day() day of month

wday() day of week label = FALSE, abbr = TRUE

qday() day of quarter

yday() day of year

hour() hour

minute() minute

second() second
120

Accessing components

wday(ymd("2019-01-11"))
6
wday(ymd("2019-01-11"), label = TRUE)
[1] Fri
7 Levels: Sun < Mon < Tues < Wed < Thurs < ... < Sat
wday(ymd("2019-01-11"), label = TRUE, abbr = FALSE)
[1] Friday
7 Levels: Sunday < Monday < Tuesday < ... < Saturday

121

Your Turn 7
Fill in the blank to:
Extract the day of the week of each flight (as a full
name) from time_hour.
Plot the average arrival delay by day as a column
chart (bar chart).

122

flights |>
 mutate(weekday = wday(time_hour, label = TRUE, abbr = FALSE)) |>
 group_by(weekday) |>
 filter(!is.na(arr_delay)) |>
 summarise(avg_delay = mean(arr_delay)) |>
 ggplot() +
 geom_col(mapping = aes(x = weekday, y = avg_delay))

123

Parsing functions
function parses to

ymd_hms(), ymd_hm(), ymd_h()

ydm_hms(), ydm_hm(), ydm_h()
POSIXct

dmy_hms(), dmy_hm(), dmy_h()

mdy_hms(), mdy_hm(), mdy_h()

ymd(), ydm(), mdy()
Date

(POSIXct if tz specified)myd(), dmy(), dym(), yq()

hms(), hm(), ms() Period
125

Parsing functions
function parses to

ymd_hms(), ymd_hm(), ymd_h()

ydm_hms(), ydm_hm(), ydm_h()
POSIXct

dmy_hms(), dmy_hm(), dmy_h()

mdy_hms(), mdy_hm(), mdy_h()

ymd(), ydm(), mdy()
Date

(POSIXct if tz specified)myd(), dmy(), dym(), yq()

hms(), hm(), ms() Period

Same name as
hms() in hms

126

hms::hms()

* on a typical day

package
name

function
name

127

hms::hms()

* on a typical day

lubridate::hms()

128

hms()

* on a typical day

hms::hms(seconds = 3, hours = 5)

Use the
hms() function in
the hms package

129

J F M A M
J A S O N

J
D

x

J F M A M
J A S O N

J
D

x

2018-01-31 11:59:59

2018-01-31 11:59:59

2018-01-31 11:59:59

2018-01-31 11:59:59

2018-01-31 11:59:59

2018-01-31 11:59:59

2018-01-31 11:59:59

2017-11-28 12:00:00

RStudio® is a trademark of RStudio, Inc. • CC BY SA RStudio • info@rstudio.com • 844-448-1212 • rstudio.com • Learn more at lubridate.tidyverse.org • lubridate 1.6.0 • Updated: 2017-12

Dates and times with lubridate : : CHEAT SHEET
Date-times

2017-11-28 12:00:00
A date-time is a point on the timeline,
stored as the number of seconds since
1970-01-01 00:00:00 UTC

dt <- as_datetime(1511870400)
"2017-11-28 12:00:00 UTC"

1. Identify the order of the year (y), month (m), day (d), hour (h),
minute (m) and second (s) elements in your data.

2. Use the function below whose name replicates the order. Each
accepts a wide variety of input formats.

PARSE DATE-TIMES (Convert strings or numbers to date-times)

date_decimal(decimal, tz = "UTC")
date_decimal(2017.5)

now(tzone = "") Current time in tz
(defaults to system tz). now()

today(tzone = "") Current date in a
tz (defaults to system tz). today()

fast_strptime() Faster strptime.
fast_strptime('9/1/01', '%y/%m/%d')

parse_date_time() Easier strptime.
parse_date_time("9/1/01", "ymd")

ymd_hms(), ymd_hm(), ymd_h().
ymd_hms("2017-11-28T14:02:00")

ydm_hms(), ydm_hm(), ydm_h().
ydm_hms("2017-22-12 10:00:00")

mdy_hms(), mdy_hm(), mdy_h().
mdy_hms("11/28/2017 1:02:03")

dmy_hms(), dmy_hm(), dmy_h().
dmy_hms("1 Jan 2017 23:59:59")

ymd(), ydm(). ymd(20170131)

mdy(), myd(). mdy("July 4th, 2000")

dmy(), dym(). dmy("4th of July '99")

yq() Q for quarter. yq("2001: Q3")

hms::hms() Also lubridate::hms(),
hm() and ms(), which return
periods.* hms::hms(sec = 0, min= 1,
hours = 2)

2017-11-28T14:02:00

2017-22-12 10:00:00

11/28/2017 1:02:03

1 Jan 2017 23:59:59

20170131
July 4th, 2000
4th of July '99
2001: Q3
2:01

2017.5

2016 2017 2018 2019 2020

J F M A M
J A S O N

J
D

x

2017-11-28
A date is a day stored as
the number of days since
1970-01-01

d <- as_date(17498)
"2017-11-28"

12:00:00
An hms is a time stored as
the number of seconds since
00:00:00

t <- hms::as.hms(85)
00:01:25

GET AND SET COMPONENTS

date(x) Date component. date(dt)

year(x) Year. year(dt)
isoyear(x) The ISO 8601 year.
epiyear(x) Epidemiological year.

month(x, label, abbr) Month.
month(dt)

day(x) Day of month. day(dt)
wday(x,label,abbr) Day of week.
qday(x) Day of quarter.

hour(x) Hour. hour(dt)

minute(x) Minutes. minute(dt)

second(x) Seconds. second(dt)

week(x) Week of the year. week(dt)
isoweek() ISO 8601 week.
epiweek() Epidemiological week.

quarter(x, with_year = FALSE)
Quarter. quarter(dt)

semester(x, with_year = FALSE)
Semester. semester(dt)

am(x) Is it in the am? am(dt)
pm(x) Is it in the pm? pm(dt)

dst(x) Is it daylight savings? dst(d)

leap_year(x) Is it a leap year?
leap_year(d)

update(object, ..., simple = FALSE)
update(dt, mday = 2, hour = 1)

Use an accessor function to get a component.
Assign into an accessor function to change a
component in place.

d ## "2017-11-28"
day(d) ## 28
day(d) <- 1
d ## "2017-11-01"

Januaryxxxxxxxx

Time Zones
R recognizes ~600 time zones. Each encodes the time zone, Daylight
Savings Time, and historical calendar variations for an area. R assigns
one time zone per vector.

Use the UTC time zone to avoid Daylight Savings.

OlsonNames() Returns a list of valid time zone names. OlsonNames()

with_tz(time, tzone = "") Get
the same date-time in a new
time zone (a new clock time).
with_tz(dt, "US/Pacific")

force_tz(time, tzone = "") Get
the same clock time in a new
time zone (a new date-time).
force_tz(dt, "US/Pacific")

PT
MT CT ET

7:00
Eastern

6:00
Central

5:00
Mountain4:00

Pacific

7:00
Eastern

7:00
Central

7:00
Mountain

7:00
Pacific

stamp() Derive a template from an example string and return a new
function that will apply the template to date-times. Also
stamp_date() and stamp_time().

1. Derive a template, create a function
sf <- stamp("Created Sunday, Jan 17, 1999 3:34")

2. Apply the template to dates
sf(ymd("2010-04-05"))
[1] "Created Monday, Apr 05, 2010 00:00"

Tip: use a
date with
day > 12

Stamp Date-times

Round Date-times
floor_date(x, unit = "second")
Round down to nearest unit.
floor_date(dt, unit = "month")

round_date(x, unit = "second")
Round to nearest unit.
round_date(dt, unit = "month")

ceiling_date(x, unit = "second",
change_on_boundary = NULL)
Round up to nearest unit.
ceiling_date(dt, unit = "month")

rollback(dates, roll_to_first =
FALSE, preserve_hms = TRUE)
Roll back to last day of previous
month. rollback(dt)

Jan Feb Mar Apr

Jan Feb Mar Apr

Jan Feb Mar Apr

* on a typical day

Dates and Times

Data types with

