
Slides CC BY-SA RStudio

Join Data with

 1

https://creativecommons.org/licenses/by-sa/4.0/

nycflights13

Data about every flight that departed La
Guardia, JFK, or Newark airports in 2013

install.packages("nycflights13")
library(nycflights13)

3

…

year

nycflights13

4

View(flights)

Flights

?

?

?

?

?

?

?

?

Flights
What airlines have the longest delays?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

airlines flights

View(flights) View(airlines)

Airline names

View(flights)

Airline names

View(flights)

Airline names

mutating joins

name plays

John guitar

Paul bass

Keith guitar

Toy data
band

name band

Mick Stones

John Beatles

Paul Beatles

instrument
instrument2 <- tribble(
 ~artist, ~plays,
 "John", "guitar",
 "Paul", "bass",
 "Keith", "guitar"
)

12

Toy data

band
name band

Mick Stones

John Beatles

Paul Beatles

name plays

John guitar

Paul bass

Keith guitar

instrument

13

band |> left_join(instrument, by = "name")

left

name band

Mick Stones

John Beatles

Paul Beatles

band

name plays

John guitar

Paul bass

Keith guitar

instrument

+ =
name band plays

Mick Stones <NA>

John Beatles guitar

Paul Beatles bass

14

right

name band

Mick Stones

John Beatles

Paul Beatles

band

name plays

John guitar

Paul bass

Keith guitar

instrument

+ =
name band plays

John Beatles guitar

Paul Beatles bass

Keith <NA> guitar

band |> right_join(instrument, by = "name")

15

full

name band

Mick Stones

John Beatles

Paul Beatles

band

name plays

John guitar

Paul bass

Keith guitar

instrument

+ =
name band plays

Mick Stones <NA>

John Beatles guitar

Paul Beatles bass

Keith <NA> guitar

band |> full_join(instrument, by = "name")

16

inner

name band

Mick Stones

John Beatles

Paul Beatles

band

name plays

John guitar

Paul bass

Keith guitar

instrument

+ =
name band plays

John Beatles guitar

Paul Beatles bass

band |> inner_join(instrument, by = "name")

17

View(flights) View(airlines)

Airline names

18

Your Turn 1
Which airlines had the largest arrival delays? Work in groups to
complete the code below.
flights |>
 filter(!is.na(arr_delay)) |>
 |>
 group_by() |>
 |>
 arrange()

1. Join airlines to flights

2. Compute and order the average
arrival delays by airline. Display full

names, no codes.

19

flights |>
 filter(!is.na(arr_delay)) |>
 left_join(airlines, by = "carrier") |>
 group_by(name) |>
 summarise(delay = mean(arr_delay)) |>
 arrange(desc(delay))
A tibble: 16 × 2
 name delay
 <chr> <dbl>
 1 Frontier Airlines Inc. 21.9
 2 AirTran Airways Corporation 20.1
 3 ExpressJet Airlines Inc. 15.8
 4 Mesa Airlines Inc. 15.6
 5 SkyWest Airlines Inc. 11.9

artist plays

John guitar

Paul bass

Keith guitar

Toy data
band

name band

Mick Stones

John Beatles

Paul Beatles

instrument2

21

What if the names do not match?
Use a named vector to match on variables with different names.

band |> left_join(instrument2, by = c("name" = "artist"))

The value of the
element = the column

name in the second
data set

The name of the
element = the column
name in the first data

set

A named vector

22

What if the names do not match?
Use a named vector to match on variables with different names.

band |> left_join(instrument2, by = c("name" = "artist"))

23

name band

Mick Stones

John Beatles

Paul Beatles

band

artist plays

John guitar

Paul bass

Keith guitar

instrument2

+ =
name band plays

Mick Stones <NA>

John Beatles guitar

Paul Beatles bass

airports |> select(1:3)

Airport names

flights |> select(14:15)

24

25

common syntax - matching names
flights |> left_join(airports, by = c("dest" = "faa"))

Your Turn 2

Join flights and airports by dest and faa.

Then for each name, compute the distance from NYC and the
average arr_delay. Hint: use first() to get the first value of distance.

Order by average delay, worst to best.

26

flights |>
 filter(!is.na(arr_delay)) |>
 left_join(airports, by = c("dest" = "faa")) |>
 group_by(name) |>
 summarise(distance = first(distance),
 delay = mean(arr_delay)) |>
 arrange(desc(delay))
A tibble: 101 × 3
name distance delay
<chr> <dbl> <dbl>
1 Columbia Metropolitan 602 41.76415
2 Tulsa Intl 1215 33.65986
3 Will Rogers World 1325 30.61905

filtering joins

band |> semi_join(instrument, by = "name")

semi

name band

Mick Stones

John Beatles

Paul Beatles

band

name plays

John guitar

Paul bass

Keith guitar

instrument

+ =
name band

John Beatles

Paul Beatles

29

anti

name band

Mick Stones

John Beatles

Paul Beatles

band

name plays

John guitar

Paul bass

Keith guitar

instrument

+ =
name band

Mick Stones

band |> anti_join(instrument, by = "name")

30

airports |> select(1:3)

Airport names

flights |> select(14:15)

31

Your Turn 3

How many airports in airports are serviced by flights in flights?
(i.e. how many places can you fly to direct from New York?)

Notice that the column to filter on is named faa in the airports
dataset and dest in the flights dataset.

32

airports |>
 semi_join(flights, by = c("faa" = "dest")) |>
 select(faa)

Recap: Two table verbs
left_join() retains all cases in left data set

right_join() retains all cases in right data set

full_join() retains all cases in either data set

inner_join() retains only cases in both data sets

semi_join() extracts cases that have a match

anti_join() extracts cases that do not have a match

nbMSJ BPB
npJ gPbK g

+ = nbpMS <J B gPB b

nbK gJ BPB
npJ gPbPb

+ = pbpg S gg B gb < b

nbJ BJ BPB
npJ gPbPb

+ = bbpS S <BB gBB b<

nbK gJ BPB
npJ gPbK g

+ = nbpMS gJ B g< < <

nbK gJ BPB
npJ gPbK g

+ = nb <MS <J B << < <

nbK gJ BPB
npJ gPbK g

+ = nb << < << < << < <

35

Data Transformation cheatsheet

Two table verbs

on
back

OFFSETS
dplyr::lag() - Offset elements by 1
dplyr::lead() - Offset elements by -1

CUMULATIVE AGGREGATES
dplyr::cumall() - Cumulative all()
dplyr::cumany() - Cumulative any()

cummax() - Cumulative max()
dplyr::cummean() - Cumulative mean()

cummin() - Cumulative min()
cumprod() - Cumulative prod()
cumsum() - Cumulative sum()

RANKINGS
dplyr::cume_dist() - Proportion of all values <=
dplyr::dense_rank() - rank with ties = min, no
gaps
dplyr::min_rank() - rank with ties = min
dplyr::ntile() - bins into n bins
dplyr::percent_rank() - min_rank scaled to [0,1]
dplyr::row_number() - rank with ties = "first"

MATH
+, - , *, /, ^, %/%, %% - arithmetic ops
log(), log2(), log10() - logs
<, <=, >, >=, !=, == - logical comparisons

dplyr::between() - x >= left & x <= right
dplyr::near() - safe == for floating point
numbers

MISC
dplyr::case_when() - multi-case if_else()
dplyr::coalesce() - first non-NA values by
element across a set of vectors
dplyr::if_else() - element-wise if() + else()
dplyr::na_if() - replace specific values with NA

pmax() - element-wise max()
pmin() - element-wise min()

dplyr::recode() - Vectorized switch()
dplyr::recode_factor() - Vectorized switch() 
for factors

mutate() and transmute() apply vectorized
functions to columns to create new columns.
Vectorized functions take vectors as input and
return vectors of the same length as output.

Vector Functions
TO USE WITH MUTATE ()

vectorized function

Summary Functions
TO USE WITH SUMMARISE ()
summarise() applies summary functions to
columns to create a new table. Summary
functions take vectors as input and return single
values as output.

COUNTS
dplyr::n() - number of values/rows
dplyr::n_distinct() - # of uniques

sum(!is.na()) - # of non-NA’s

LOCATION
mean() - mean, also mean(!is.na())
median() - median

LOGICALS
mean() - Proportion of TRUE’s
sum() - # of TRUE’s

POSITION/ORDER
dplyr::first() - first value
dplyr::last() - last value
dplyr::nth() - value in nth location of vector

RANK
quantile() - nth quantile
min() - minimum value
max() - maximum value

SPREAD
IQR() - Inter-Quartile Range
mad() - median absolute deviation
sd() - standard deviation
var() - variance

Row Names
Tidy data does not use rownames, which store a
variable outside of the columns. To work with the
rownames, first move them into a column.

RStudio® is a trademark of RStudio, Inc. • CC BY SA RStudio • info@rstudio.com • 844-448-1212 • rstudio.com • Learn more with browseVignettes(package = c("dplyr", "tibble")) • dplyr 0.7.0 • tibble 1.2.0 • Updated: 2017-03

rownames_to_column()
Move row names into col.
a <- rownames_to_column(iris, var
= "C")

column_to_rownames()
Move col in row names.
column_to_rownames(a, var = "C")

summary function

C A B

Also has_rownames(), remove_rownames()

Combine Tables
COMBINE VARIABLES COMBINE CASES

Use bind_cols() to paste tables beside each
other as they are.

bind_cols(…) Returns tables placed side by
side as a single table.
BE SURE THAT ROWS ALIGN.

Use a "Mutating Join" to join one table to
columns from another, matching values with
the rows that they correspond to. Each join
retains a different combination of values from
the tables.

left_join(x, y, by = NULL,
copy=FALSE, suffix=c(“.x”,“.y”),…)
Join matching values from y to x.

right_join(x, y, by = NULL, copy =
FALSE, suffix=c(“.x”,“.y”),…)
Join matching values from x to y.

inner_join(x, y, by = NULL, copy =
FALSE, suffix=c(“.x”,“.y”),…)
Join data. Retain only rows with
matches.

full_join(x, y, by = NULL,
copy=FALSE, suffix=c(“.x”,“.y”),…)
Join data. Retain all values, all rows.

Use by = c("col1", "col2", …) to
specify one or more common
columns to match on.
left_join(x, y, by = "A")

Use a named vector, by = c("col1" =
"col2"), to match on columns that
have different names in each table.
left_join(x, y, by = c("C" = "D"))

Use suffix to specify the suffix to
give to unmatched columns that
have the same name in both tables.
left_join(x, y, by = c("C" = "D"), suffix =
c("1", "2"))

Use bind_rows() to paste tables below each
other as they are.

bind_rows(…, .id = NULL)
Returns tables one on top of the other
as a single table. Set .id to a column
name to add a column of the original
table names (as pictured)

intersect(x, y, …)
Rows that appear in both x and y.

setdiff(x, y, …)
Rows that appear in x but not y.

union(x, y, …)
Rows that appear in x or y.  
(Duplicates removed). union_all()
retains duplicates.

Use a "Filtering Join" to filter one table against
the rows of another.

semi_join(x, y, by = NULL, …)
Return rows of x that have a match in y.
USEFUL TO SEE WHAT WILL BE JOINED.

anti_join(x, y, by = NULL, …) 
Return rows of x that do not have a
match in y. USEFUL TO SEE WHAT WILL
NOT BE JOINED.

Use setequal() to test whether two data sets
contain the exact same rows (in any order).

EXTRACT ROWS

A B
1 a t
2 b u
3 c v

1 a t
2 b u
3 c v

A B
1 a t
2 b u
3 c v

A B C
1 a t
2 b u
3 c v

x y
A B C
a t 1
b u 2
c v 3

A B D
a t 3
b u 2
d w 1

+ =
A B C
a t 1
b u 2
c v 3

A B D
a t 3
b u 2
d w 1

A B C D
a t 1 3
b u 2 2
c v 3 NA

A B C D
a t 1 3
b u 2 2
d w NA 1

A B C D
a t 1 3
b u 2 2

A B C D
a t 1 3
b u 2 2
c v 3 NA

d w NA 1

A B.x C B.y D
a t 1 t 3
b u 2 u 2
c v 3 NA NA

A.x B.x C A.y B.y
a t 1 d w
b u 2 b u
c v 3 a t

A1 B1 C A2 B2
a t 1 d w
b u 2 b u
c v 3 a t

x

y

A B C
a t 1
b u 2
c v 3

A B C
C v 3
d w 4+

DF A B C
x a t 1
x b u 2
x c v 3
z c v 3
z d w 4

A B C
c v 3

A B C
a t 1
b u 2
c v 3
d w 4

A B C
a t 1
b u 2

x y
A B C
a t 1
b u 2
c v 3

A B D
a t 3
b u 2
d w 1

+ =

A B C
c v 3

A B C
a t 1
b u 2

dplyr

Slides CC BY-SA RStudio

Join Data with

https://creativecommons.org/licenses/by-sa/4.0/

